Neonicotinoid Registration Review and Pollinator Risk Assessment

Richard Allen Director, Valent Technical Center

Products That Work, From People Who Care®

- Registration Review Process and Timelines
- Development and Implementation of Pollinator Risk Assessment Scheme
- Challenges for the Assessment of Risk to Pollinators following Use of Neonicotinoids to Control Pests in Ornamental Plants and Suburban Landscape

EPA's Registration Review Process

- 15 year cycle to ensure each registered pesticide meets the current FIFRA standard for registration
 - Human Health
 - Environment
- Scope and depth of review tailored to circumstances
- Imidacloprid registration review started in FY2008 (first registered in 1994)
- EPA accelerated the registration review timeline for other neonicotinoids to begin in FY2012

Neonicotinoid Registration Review and Pollinators – Clothianidin Example

VALENT[®]

	2011	2012	2013	2014	2015	2016	2017	2018
Open Docket								
Issue Data Call-In								
Data Generation								
Preliminary Risk Assessment								
Registration Review Decision								
Development of Pollinator Risk Assessment			Guidance Document Published (EPA/ PMRA/ Report CDPR)					
EPA risk assessment white paper for SAP								

Fundamentals of Ecological Risk Assessment

The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skills.

albert Einstein

BISK HYPOTHESIS

Stressor-initiated

- Based on the physico-chemical properties of neonicotinoid insecticides, the compounds can be translocated from soil to pollen and nectar systemic resulting in adverse impact on honeybee colonies
- Effect-initiated
 - Honeybee colonies are adversely impacted when foraging adults are exposed to dust generated during the planting of corn seed treated with neonicotinoid insecticides
- Value initiated
 - Declines in colony health are related to the widespread use of neonicotinoid insecticides

Specific Measurable

Specific Measurable

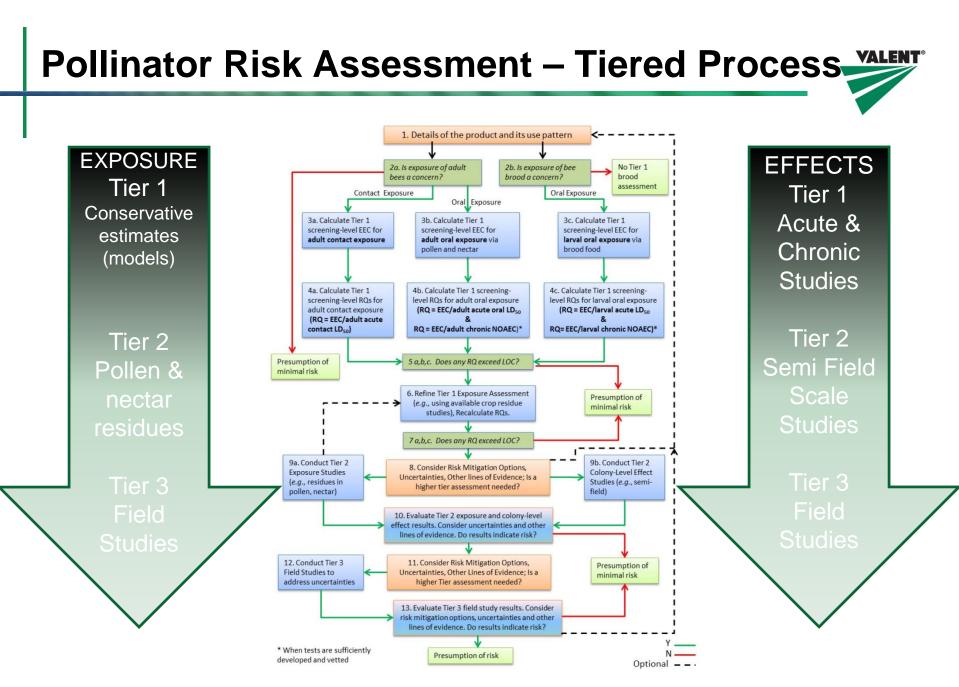
Vague

Not easily

measured

VALENT

Systemic Pesticide: Soil Application Stressor Runoff/ Residues in Soil* Source Erosion Root Uptake Residues In Residues in Exposure Pollen, Nectar, Surface Water Media Exudates Ingestion Brood Provisions** Bee Brood **Hive Bees** Foraging Bees Wax, Propolis Receptors (Nurse, Worker, (workers) Royal Jelly Drone) Queen Pollen & Nectar Processing Ingestion; Comb Production Quantity and Quality of Hive Products Attribute Population Size and Stability of Colonies Reduced honey, wax, propolis production Change Reduced colony strength and survival Reduced gueen fecundity & brood success Contribution to Pollinator Biodiversity Reduced individual survival, behavior changes Reduced species richness and abundance



RISK QUOTIENTS AND LEVELS OF CONERN

Risk Quotient = <u>Point Estimates of Exposure</u> Point Estimates of Effect

Level of Concern to which the Risk Quotient is compared is:

- 0.4 for acute risk (based on historic dose response relationships for bees & 10% mortality level)
- 1.0 for chronic risk

Exposure – Tier 1

- Foliar Applications
 - Assessment based on empirical measurements
 - Contact Exposure (µg/bee) = 2.7 x App. Rate (lb ai/A)

Koch & Weisser (1997)

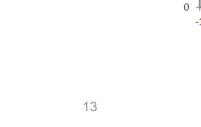
Clothianidin: 0.27 µg/bee

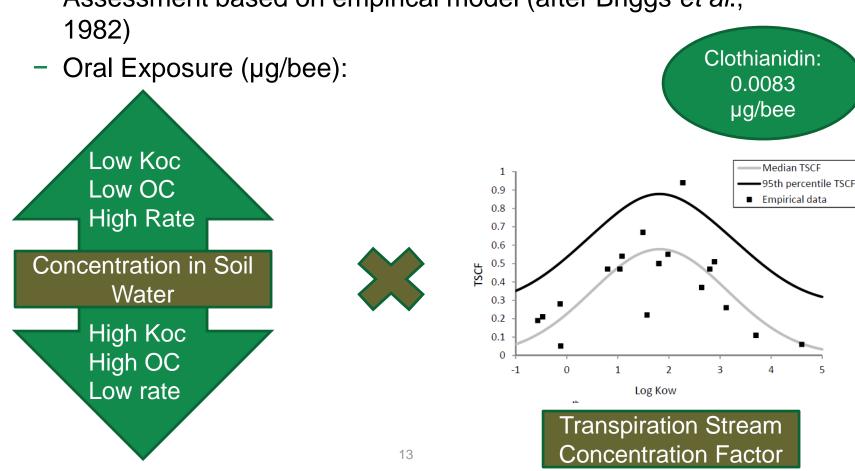
Oral Exposure (µg/bee) = 110 x 0.292 x App. Rate (lb ai/A)

[µg/g]

Residue in tall grass – based on Hoerger & Kenaga(1972) [g] Daily consumption of nectar by foraging bees – EPA (2012)

Clothianidin: 3.2 µg/bee


Exposure – Tier 1


- Soil Applications
 - Assessment based on empirical model (after Briggs *et al.*, 1982)
 - Oral Exposure (µg/bee):

Equation 1.
$$C_{stem} = \left[10^{(0.95*LogKow-2.05)} + 0.82\right] * TSCF * \left[\frac{\rho}{\theta + \rho * Koc * foc}\right] * C_{soil}$$

Where: C_{stem} = concentration in stems (µg a.i./g plant) C_{soil} = concentration in soil (µg a.i./g soil) f_{oc} = fraction of organic carbon in soil θ = soil-water content by volume (cm³/cm³) ρ = soil bulk density (g-dw/cm³) K_{oc} = soil organic carbon-water partitioning coefficient (cm³/g-oc or L/kg-oc) TSCF =Transpiration Stream Concentration Factor

Equation 2. $TSCF = -0.0648 * (Log Kow)^2 + 0.241 * LogKow + 0.5822$

Exposure – Tier 1

- Soil Applications
 - Assessment based on empirical model (after Briggs et al.,

Pollinator Risk Assessment - Analysis Phase

5

Exposure – Tier 1

- Tree Trunk Applications
 - Simple Math
 - Oral Exposure (μ g/bee) = <u>Amount applied (μ g)</u> x 0.292

Mass of foilage (g)

Effects Characterization – Tier 1

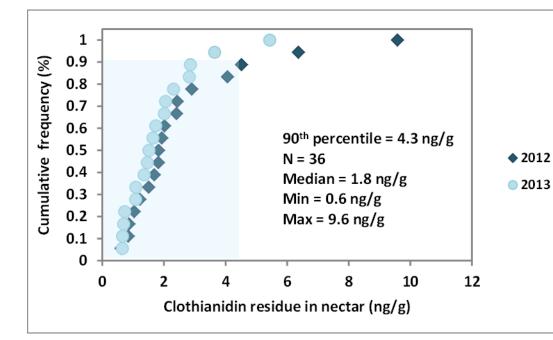
- Acute Contact Exposure (Adults) (LD50) - µg/bee
- Acute Oral Exposure (Adults) (LD50) µg/bee
- Toxicity of Residues on Foliage (RT25) days
- 10 Day Adult Feeding Study (LC50 & NOAEC) μg/g
- Repeat Dose Larval Toxicity (NOAEC) µg/g

Risk Characterization – Tier 1

Endpoint	Effect	Application Method	Exposure	RQ	LOC	What next?
Oral Toxicity to adult foragers	LD50: 0.0037 µg/bee	Foliar (0.1 lb ai/A)	3.2 µg/bee 865		0.4	Label mitigation
		Soil (0.2 lb ai/A)	0.0083 µg/bee	2.4	0.4	Tier 2 measurements of pollen/nectar residues. Tier 2 Semi field effect studies
Dietary toxicity to larvae	NOAEC: 0.68 µg/g diet	Soil (0.2 lb ai/A)	0.028 µg/g	0.04	1	No direct impact on brood development expected.

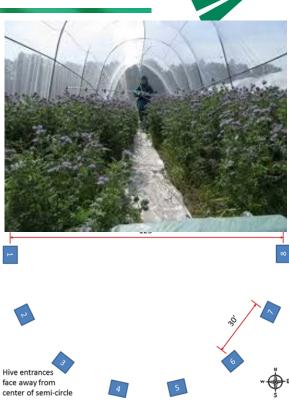
Exposure – Tier 2

- Field studies to characterize residues in nectar and pollen following application under actual use conditions
- Key variables:
 - Soil type
 - Climate/ weather
 - Irrigation practices
 - Application type
 - Timing between application and bloom



Exposure – Tier 2

 Field studies to characterize residues in nectar and pollen following application under actual use conditions


Colony Effects – Tier 2

- Tunnel tests
 - Assess acute hazard
 - Surrogate crop which provides large amounts of bee forage
 - Target crop can be used if attractive to bees e.g. canola seed treatment
 - Limited extrapolation possible

Colony Feeding Studies

- Exposure via sucrose solution placed inside hives
- Honey bees are free foraging not stressed by being constrained
- Chronic NOAEC can be compared to a wide range of exposure scenarios with different crops and use patterns

19

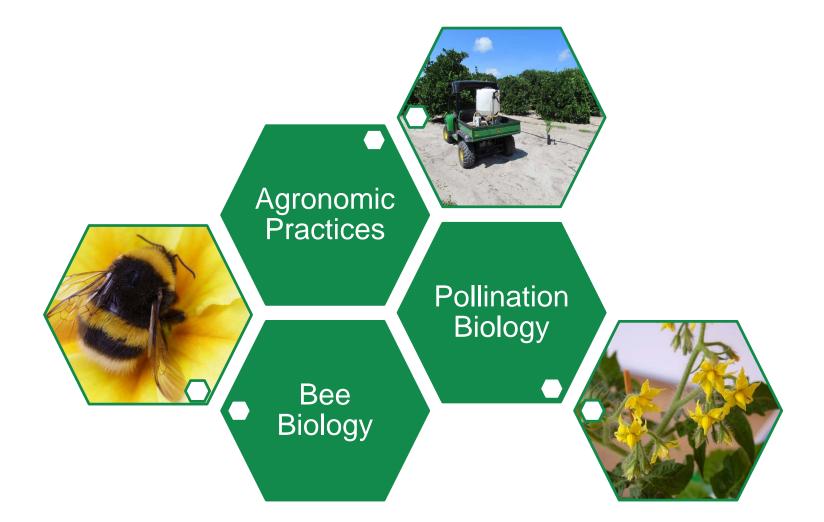
Full Field Studies – Tier 3

- Reserved to resolve risk associated with a particular use pattern to address specific uncertainties remaining from lower tier risk assessments
- Resource intensive
- Need to minimize impact of other stressors or variables over a large geographical area
- Are monitoring studies with a focus of hive health and levels of exposure or product use a viable alternative?

Risk Characterization

- Risk Quotients
- Lines of evidence
 - Regulatory studies
 - Incident data
 - Peer reviewed literature
- Weight of evidence
 - Robustness
 - Consistent
 - Plausible
- Use of simulation models
- Describing uncertainties
- Filling data gaps

The Weight of Evidence



Addressing Uncertainties

23

Challenges of Applying Pollinator Risk Assessment Process to Ornamental and Landscape Use Patterns

- Environmental risk assessment becomes more complex the greater the heterogeneity of the landscape under consideration.
- Tools, supporting data, processes are already developed to assess risk of plant protection products in agriculture.
- Diversity of use areas, application techniques, behavior of receptors in use areas all add to the complexity of the challenge.

But Remember... FIFRA is a risk/benefit statute

